A THEOREM ON CYCLIC POLYTOPES

BY

G. C. SHEPHARD

ABSTRACT

Let C(v, d) represent a cyclic polytope with v vertices in d dimensions. A criterion is given for deciding whether a given subset of the vertices of C(v, d) is the set of vertices of some face of C(v, d). This enables us to determine, in a simple manner, the number of *j*-faces of C(v, d) for each value of j $(1 \le j \le d-1)$.

Cyclic polytopes, which were discovered early this century by Carathéodory [1,2] and more recently rediscovered by Gale [3] and Motzkin [5] as examples of neighbourly polytopes, play an important role in the combinatorial theory of convex polytopes. The main reason for this is the conjecture that, for a given number of vertices v and dimension d, the cyclic polytope C(v, d) has the maximum possible number of faces of each dimension $k(1 \le k \le d - 1)$. For a short history, as well as further information about cyclic polytopes, the reader should consult the recent book [4] by Branko Grünbaum.

The purpose of this note is to prove a theorem which generalises Gale's evenness condition [4, 4.7.2]. It characterises, in a very simple manner, those subsets of the vertices of C(v, d) which belong to a face of any dimension. The whole combinatorial structure of C(v, d) thus becomes apparent, and all the well-known properties of cyclic polytopes are easy corollaries. In particular the theorem enables us to determine in a simple manner the numbers $f_k(C(v, d))$ of k-faces of C(v, d). These numbers were first determined by Motzkin [5] but no proofs were given. For a proof using the Dehn-Sommerville equations, see [4, 9.6].

For brevity, any totally ordered set V with cardinality v will be called a v-set. For example, any v distinct points on a directed line, or simple arc, is a v-set. Write $V = \{x_1, \dots, x_v\}$ where $x_i < x_j$ if and only if i < j. Then a subset $X \subseteq V$ is called *contiguous* if, for some $1 < i \leq j < v$,

$$X = \{x_i, x_{i+1}, \dots, x_j\}, x_{i-1} \notin X, x_{j+1} \notin X.$$

X will be called *even* or *odd* according to the parity of card X = j - i + 1. An *end-set* is a subset Y of V of the form

Received October 7, 1968.

$$Y = \{x_1, \dots, x_i\}, x_{i+1} \notin Y, \text{ or}$$
$$Y = \{x_j, \dots, x_v\}, x_{j-1} \notin Y.$$

Clearly any subset $W \subseteq V$ ($W \neq V$) can be written uniquely in the form

$$W = Y_1 \cup X_1 \cup \cdots \cup X_t \cup Y_2$$

where $0 \le t \le \lfloor \frac{1}{2}v \rfloor$, the X_i are contiguous subsets of V and Y_1 , Y_2 are end-sets of V or are empty. W is said to be of type (r, s) if card W = r and exactly s of the contiguous subsets X_i are odd.

The set of vertices $V = \operatorname{vert} C(v, d)$ of a cyclic polytope is a v-set, for it consists of v distinct points lying on a dth order curve μ in E^d . (In [4, 4.7], Grünbaum uses the moment curve $(t, t, \dots t^d)$, $-\infty < t < \infty$, and mentions dth order curves that have been used by other authors.) With the above terminology, Gale's evenness condition [4, 4.7.2] can be stated as follows: A subset $W \subseteq V$ is the set of vertices of a facet (a(d - 1)-dimensional face) of C(v, d) if and only if W is of type (d, 0). This is the particular case k = d - 1 of our theorem:

THEOREM. A subset W of V = vert C(v, d) is the set of vertices of a k-face of C(v, d) $(0 \le k \le d - 1)$ if and only if W is of type (k + 1, s) with $s \le d - k - 1$.

Proof. We consider first the case k = d - 1. Given any subset $W \subseteq V$ with card W = d, then W is an affinely independent subset of E^d , and the affine hull aff W is a hyperplane H. Since μ is of degree d, $H \cap \mu = W$, and the points of W divide μ into d + 1 arcs lying alternately on each side of H. Clearly conv W is a facet of C(v, d) if and only if H supports C(v, d), that is, if and only if every two points of $V \setminus W$ are separated, on μ , by an even number of points of W. This, in turn, is equivalent to the condition that W is of type (d, 0), that is, W contains no odd contiguous subsets. (This proof is essentially the same as that of [4, 4.7.2].) The theorem is therefore true for k = d - 1. Consider now the general case. Let $W \subseteq V$ with card W = k + 1 ($0 \leq k \leq d - 1$) be a given subset. If W has at most d - k - 1 odd contiguous subsets, then it is clearly possible to find a subset T of μ with $T \cap V = \emptyset$ and card T = d - k - 1 such that the subset $W \cup T$ of the (v + d - k - 1)-set $V \cup T$ has only even contiguous subsets. Then the hyperplane $H = \operatorname{aff}(W \cup T)$ supports C(v, d) by the argument given above, and as $W \subseteq H$, conv W is a face of C(v, d). The condition is also necessary, for if conv W is a face of C(v, d), then it is also a face of some facet conv W' ($W \subseteq W' \subseteq V$) of C(v, d). Since W' has no odd contiguous subsets, clearly W can have at most d - k - 1 odd contiguous subsets.

Finally we note that since every set of k + 1 distinct points of $(1 \le k \le d - 1)$ are affinely independent, every k-face of C(v, d) has k + 1 vertices (it is a k-simplex). This completes the proof of the theorem.

COROLLARY 1. C(v,d) is $\lfloor \frac{1}{2}d \rfloor$ – neighbourly. (That is, every $\lfloor \frac{1}{2}d \rfloor$ points of V = vert C(v,d) are the vertices of a face of C(v,d).)

Proof. If card $W = \lfloor \frac{1}{2}d \rfloor$, then W has at most $\lfloor \frac{1}{2}d \rfloor$ odd contiguous subsets. Since $\lfloor \frac{1}{2}d \rfloor \leq d - \lfloor \frac{1}{2}d \rfloor$, the theorem implies that conv W is a face of C(v, d).

COROLLARY 2. The number $f_k(C(v,d))$ of k faces of C(v,d) is given by the expressions

(1)
$$f_k(C(v,2n)) = \sum_{j=1}^n \frac{v}{v-j} {\binom{v-j}{j} \binom{j}{k+1-j}}, \qquad 0 \le k \le 2n-1,$$

(2)
$$f_k(C(v,2n+1)) = \sum_{j=0}^n \frac{k+2}{j+1} {v-j-1 \choose j} {j+1 \choose k+1-j}, \quad 0 \leq k \leq 2n,$$

with the usual convention that a binomial coefficient $\begin{pmatrix} p \\ q \end{pmatrix}$ is zero if p < q or q < 0.

Proof. This depends upon a simple combinatorial argument to determine the number of distinct subsets $W \subseteq V$ of type (k + 1, s) with $s \leq d - k - 1$. The odd and even dimensional cases are essentially different: we begin with the case d = 2n.

By a *v*-circuit we mean any set of cardinality v which is cyclically ordered. For example v points on an oriented simple closed curve is a *v*-circuit. The essential feature of a *v*-circuit V is that every point of V has a uniquely defined successor; the *v*th successor of each point is the point itself. Contiguous subsets of a *v*circuit are defined in the obvious manner, and a subset $W \subseteq V$ is said to be of type (r, s) if card W = r and W contains exactly s odd contiguous subsets.

Let V be a v-set and $W \subseteq V$ be a subset of type (k + 1, s) or (k + 1, s - 1), where s is any integer satisfying $s \equiv k + 1 \pmod{2}$. Then V may be made into a v-circuit by specifying that x_{i+1} is the successor of x_i , suffixes reduced modulo v, and W becomes a subset $W_1 \subseteq V_1$ of type (k + 1, s). (If W is of type (k + 1, s - 1)then the fact that s and k + 1 are of the same parity implies that the union of the end-sets of W has odd cardinality. Hence W_1 has one more odd contiguous subset than W.) We write p(v, k + 1, s) for the total number of distinct subsets $W \subseteq V$ (or of subsets $W_1 \subseteq V_1$) with the above properties.

In order to determine the numerical value of p(v, k + 1, s) we proceed as follows. By definition, each point $x \in V$ and therefore each contiguous subset of V_1 , has a unique successor. Let $W_2 \subseteq V_1$ be the subset of type (k + s + 1, 0) formed by adjoining to W_1 the successor of each of its s odd contiguous subsets. The number of such subsets W_2 is p(v, k + s + 1, 0), and each W_2 consists of j pairs of adjacent points of V_1 , where 2j = k + s + 1. Since deletion of the second point in any s₂of these j pairs produces a set of type (k + 1, s), we see that $\binom{j}{s}$ distinct sets W_1 correspond to the same W_2 and so

(3)
$$p(v, k+1, s) = {j \choose s} p(v, 2j, 0).$$

We shall now determine p(v, 2j, 0). If we delete one point of each of the *j* pairs in a set W_2 , we obtain a subset W_3 of a (v-j)-circuit V_2 with card $W_3 = j$. The number of such sets W_3 is clearly $\binom{v-j}{j}$. For each set W_3 let *r* be the number of cyclic permutations of V_2 (that is, automorphisms of V_2 which preserve the cyclic ordering of the points) which leave W_3 invariant. Then *r* is also the number of cyclic permutations of V_1 which leave W_2 invariant. The cyclic permutations of V_2 applied to W_3 yield (v-j)/r distinct subsets of V_2 , and cyclic permutations of V_1 applied to the corresponding set W_2 yield v/r distinct subsets of V_1 (of type (2j, 0)). We deduce that

(4)
$$p(v,2j,0) = \frac{v}{v-j} {\binom{v-j}{j}}$$

From (3) and (4),

(5)
$$p(v,k+1,s) = \frac{v}{v-j} {\binom{v-j}{j} \binom{j}{s}}$$

where 2j = k + s + 1, and from the theorem,

(6)
$$f_k(C(v,2n)) = \sum_{\substack{s=0\\s\equiv k+1 \pmod{2}}}^{d-k-1} p(v,k+1,s).$$

Substituting the value of p(v, k + 1, s) from (5) in (6), and changing the variable in the summation from s to j, we immediately obtain (1). (The terms corresponding to $1 \le j \le \lfloor \frac{1}{2}(k+1) \rfloor$ in the summation are identically zero.)

For the odd-dimensional case d = 2n + 1, we need to determine, for each k, with $0 \le k \le 2n$, the number of distinct subsets of V of type (k + 1, s) with $s \le 2n - k$. To do this we transform the v-set V into a (v + 1)-circuit V_1 , by adjoining one point x which is the successor of x_v and the predecessor of x_1 . For each subset W of V we define $W_1 \subseteq V_1$ as that subset into which W is transformed, together with the additional point x. If W is of type (k + 1, s) or (k + 1, s - 1) with $k \equiv s \pmod{2}$, then W_1 is of type (k + 2, s). By (6) the number of such sets W_1 with $s \le 2n - k$ is G. C. SHEPHARD

(7)
$$\sum_{\substack{s=0\\s\equiv k \pmod{2}}}^{2n-k} p(v+1,k+2,s) = f_{k+1}(C(v+1,2n+2)).$$

For each W_1 of type (k + 2, s) let r be the number of cyclic permutations of V_1 that leave W_1 invariant. Then cyclic permutations of V_1 applied to W_1 yield (v + 1)/r distinct subsets of V_1 of type (k + 1, s). Since deletion of any one of the k + 2 points of W_1 converts V_1 into a v-set V, we see that each W_1 leads to (k + 2)/r distinct subsets $W \subseteq V$ of type (k + 1, s) or (k + 1, s - 1). Hence from (7), the total number of distinct subsets of V of type (k + 1, s) with $s \leq 2n - k$ is

$$f_k(C(v,2n+1)) = \frac{k+2}{v+1} f_{k+1}(C(v+1,2n+2))$$

(compare [1,9.6.2]). If we substitute for $f_{k+1}(C(v+1,2n+2))$ from (1) we obtain (2), which completes the proof of the corollary.

The author wishes to express his thanks to Branko Grünbaum and Peter McMullen for reading a preliminary version of this paper and making a number of suggestions for improvement.

References

1. C. Carathéodory, Ueber den Variabilitätsbereich der Koeffizienten von Potentzreiher die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115.

2. C. Carathéodory, Ueber den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen Rend. Circ. Mat. Palermo, 32 (1911), 193-217.

3. D. Gale, Neighborly and cyclic polytopes, Proc. Symp. Pure Math., 7 (Convexity) (1963), 225-232.

4. B. Grünbaum, Convex Polytopes, London-New York-Sydney, 1967.

5. T. S. Motzkin, Comonotone curves and polyhedra, Abstract 111, Bull. Am. Math. Soc., 63 (1957), 35.

UNIVERSITY OF EAST ANGLIA, NORWICH, NOR 88C, ENGLAND