
A THEOREM ON CYCLIC POLYTOPES 

BY 

G. C. SHEPHARD 

ABSTRACT 

Let C(v, d) represent a cyclic polytope with v vertices in d dimensions. A cri- 
terion is given for deciding whether a given subset of the vertices of C(v, d) 
is the set of vertices of some face of C(v, d). This enables us to determine, 
in a simple manner, the number of j-faces of C(v, d) for each value of j 
(1 _ _ < j ~ d - 1 ) .  

Cyclic polytopes, which were discovered early this century by Carath6odory [1, 2] 
and more recently rediscovered by Gale [3] and Motzkin [5] as examples of 
neighbourly polytopes, play an important role in the combinatorial theory of 
convex polytopes. The main reason for this is the conjecture that, for a given 
number of vertices v and dimension d, the cyclic polytope C(v, d) has the maximum 
possible number of faces of each dimension k(1 < k < d - 1). For a short history, 
as well as further information about cyclic polytopes, the reader should consult 
the recent book [4] by Branko Griinbaum. 

The purpose of this note is to prove a theorem which generalises Gale's evenness 
condition [4, 4.7.2]. It characterises, in a very simple manner, those subsets of 
the vertices of C(v, d) which belong to a face of any dimension. The whole com- 
binatorial structure of C(v,d) thus becomes apparent, and all the well-known 
properties of cyclic polytopes are easy corollaries. In particular the theorem 
enables us to determine in a simple manner the numbers fk(C(v, d)) of k-faces 
of C(v, d). These numbers were first determined by Motzkin [5] but no proofs 
were given. For a proof using the Dehn-Sommerville equations, see I4, 9.6]. 

For brevity, any totally ordered set V with cardinality v will be called a v-set. 
For example, any v distinct points on a directed line, or simple arc, is a v-set. 
Write V = {xl, "",xv} where x i < xj if and only if i < j .  Then a subset X ___ V 
is called contiguous if, for some 1 < i < j  < v, 

X = {xi, x~+l,..',xj}, x~-i CX, xj+~ CX. 

X will be called even or odd according to the parity of card X = j  - i + 1. An 
end-set is a subset Y of V of the form 
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Y = {xl ," ' ,x i} ,  x~+l ~ Y, or 

r = {x i , . . . ,  xv}, x j_  1 ~ Y. 

Clearly any subset W__q V (W~ V) can be written uniquely in the form 

W = Y I u X 1 u . . . U X t U Y 2  

where 0 < t < [½v], the X, are contiguous subsets of  V and Y1, Y2 are end-sets 
of V or are empty. W is said to be of  type (r, s) if card W = r and exactly s of  the 

contiguous subsets X~ are odd. 
The set of vertices V = vert C(v, d) of a cyclic polytope is a v-set, for it consists 

of v distinct points lying on a dth order curve p in E a. (In [4, 4.7], Griinbaum 

uses the moment curve (t, t,... ta), - oo < t < 0% and mentions dth order curves 

that have been used by other authors.)With the above terminology, Gale's 
evenness condition [4, 4.7.2] can be stated as follows: A subset W ~ V is the set 
of vertices of a facet (a(d - 1)-dimensional face) of C(v, d) if  and only if W is of 
type (d, 0). This is the particular case k = d - 1 of  our theorem: 

THEOREM. A subset W of V = vertC(v,d) is the set of vertices of a k-face of 
C(v,d) (O < k < d - 1 )  if and only if W is of type (k + l,s) with s < d -  k - 1 .  

Proof. We consider first the case k = d - 1. Given any subset W _ V with 
card W = d, then W is an affinely independent subset of  E d, and the affine hull 

aft W is a hyperplane H. Since p is of degree d, H n/~ = W, and the points of  W 

divide p into d + 1 arcs lying alternately on each side of H. Clearly conv W is a 
facet of C(v, d) if  and only if H supports C(v, d), that is, if  and only if every two 

points of V \ W are separated, on/~, by an even number of points of  W. This, in 
turn, is equivalent to the condition that W is of  type (d,0), that is, W contains 
no odd contiguous subsets. (This proof  is essentially the same as that of [4, 4.7.2].) 
The theorem is therefore true for k = d -  1. Consider now the general case. 
Let W ___ V with card W = k + 1 (0 < k < d - 1) be a given subset. If  W has at 
most d - k - 1 odd contiguous subsets, then it is clearly possible to find a subset 
T o f p w i t h T n V = ~ a n d c a r d  T = d - k - 1  such that the subset W U T o f  

the (v + d - k - 1)-set V u T has only even contiguous subsets. Then the hyper- 
plane H = aff(W u T) supports C(v,d) by the argument given above, and as 

W _c H, conv W is a face of C(v, d). The condition is also necessary, for if conv W 

is a face of C(v, d), then it is also a face of  some facet cony W' (W __q W' _ V) 

of  C(v, d). Since W' has no odd contiguous subsets, dearly W can have at most 
d - k - 1 odd contiguous subsets. 

Finally we note that since every set of  k + 1 distinct points of  (1 < k < d - 1) 
are aftinely independent, every k-face of  C(v, d) has k + 1 vertices (it is a 

k-simplex). This completes the proof  of  the theorem. 
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COROLLARY 1. C(v,d) is [ ½ d ] -  neighbourly. (That is, every [½d] points of 
V = vert C(v, d) are the vertices of a face of C(v, d).) 

Proof. I f  card W = [½d], then W has at most [½d] odd contiguous subsets. 
Since [½d] < d - [½d], the theorem implies that conv W is a face of C(o, d). 

COROLLARY 2. The number fk(C(v,d)) of k faces of C(v,d) is given by the 
expressions 

(1) fk(C(v,2n)) = ( v ; 9 ( j )  0_ k<2n, 
j=l v - j  k + l - j  ' - 

j=o j + l \  j k + l - j ] '  0 < k < 2 n ,  

with the usual convention that a binomial coefficient (Pq ) is zero if p < q or 
q < 0 .  

Proof. This depends upon a simple combinatorial argument to determine 

the number of  distinct subsets W ~ V of type (k + 1,s) with s < d -  k -  1. 

The odd and even dimensional cases are essentially different: we begin with the 

case d = 2n. 

By a v-circuit we mean any set of  cardinality v which is cyclically ordered. 

For  example v points on an oriented simple closed curve is a o-circuit. The essential 
feature of  a v-circuit V is that every point of V has a uniquely defined successor; 
the vth successor of  each point is the point itself. Contiguous subsets of a v- 
circuit are defined in the obvious manner, and a subset W ~_ V is said to be of  type 
(r, s) if  card W = r and W contains exactly s odd contiguous subsets. 

Let V be a v-set and W ___ V be a subset of type (k + 1,s) or (k + 1,s - 1), 
where s is any integer satisfying s = k + 1 (mod 2). Then V may be made into a 
v-circuit by specifying that x~+ 1 is the successor of  x~, suffixes reduced modulo v, 

and W becomes a subset W1 ~ V~ of type (k + 1, s). (If  W is of type (k + 1, s - 1) 

then the fact that s and k + 1 are of the same parity implies that the union of  the 

end-sets of  W has odd cardinality. Hence W1 has one more odd contiguous subset 
than W.) We write p(v, k + 1, s) for the total number of distinct subsets W G V 

(or of  subsets W1 ___ I11) with the above properties. 

In order to determine the numerical value of  p(v, k + 1, s) we proceed as follows. 

By definition, each point x ~ V and therefore each contiguous subset of  V~, has a 
unique successor. Let W2 --- 111 be the subset of  type (k + s + 1,0) formed by 
adjoining to V¢~ the successor of  each of  its s odd contiguous subsets. The number 

of such subsets W2 is p(v, k + s + 1,0), and each W2 consists o f j  pairs of adjacent 
points of  II1, where 2j = k + s + 1. Since deletion of  the second point in any s~of 
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these j pairs produces a set of type (k + l,s), we see that ( ~ ) distinct sets W~ 

correspond to the same W2 and so 

(3) p(v,k+ 1 , s ) =  ( ~ ) p ( v , 2 j ,  O). 

We shall now determine p(v, 2j, 0). If we delete one point of each of the j pairs in 
a set W2, we obtain a subset W3 of a (v - j ) -c i rcu i t  V2 with card W a = j .  The 

number of such sets Wa is clearly ( V ;  J). For each set Wa let r be the number of 

cyclic permutations of V2 (that is, automorphisms of V2 which preserve the cyclic 
ordering of the points) which leave VII3 invariant. Then r is also the number of  
cyclic permutations of  1/1 which leave W2 invariant. The cyclic permutations of  V2 
applied to W3 yield (v - j ) / r  distinct subsets of 112, and cyclic permutations of  1/1 
applied to the corresponding set W2 yield v/r distinct subsets of  V1 (of type (2j, 0)). 
We deduce that 

(4) p(v, 2j, O) = v ----7 " 

From (3) and (4), 

) 
where 2j = k + s + 1, and from the theorem, 

d - k - 1  

(6) fk(C(v, 2n)) = 2 p(v, k + 1, s). 
s = O  

s=-k+l  (rood 2) 

Substituting the value of  p(v, k + 1, s) from (5) in (6), and changing the variable 
in the summation from s to j ,  we immediately obtain (1). (The terms corresponding 
to 1 < j < [½(k + 1)] in the summation are identically zero.) 

For the odd-dimensional case d = 2n + 1, we need to determine, for each k, 
with 0 < k < 2n, the number of distinct subsets of  V of type (k + 1,s) with 
s < 2n - k. To do this we transform the v-set V into a (v + 1)-circuit V1, by 
adjoining one point x which is the successor of  xv and the predecessor of  xl. 
For each subset W of V we define W1 _ V~ as that subset into which W is trans- 
formed, together with the additional point x. If  W is of type (k + 1,s) or 
(k + 1, s - 1) with k -= s (mod 2), then W1 is of type (k + 2, s). By (6) the number 
of  such sets W1 with s =< 2n - k is 
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2n-k 
(7) ~, p ( v + l , k + 2 , s ) = f ~ + l ( C ( v + l , 2 n + 2 ) ) .  

s=O 
s--k (mad 2) 

For each W1 of  type (k + 2, s) let r be the number of  cyclic permutations of  V1 
that leave W~ invariant. Then cyclic permutations of  [11 applied to W~ yield 
(v + 1)/r distinct subsets of  Vl of  type (k + 1, s). Since deletion of  any one of  the 
k + 2 points of  W1 converts 111 into a v-set V, we see that each W, leads to 
(k + 2)Jr distinct subsets W ~ V of  type (k + 1, s) or (k + 1, s - 1). Hence from (7), 
the total number of  distinct subsets of  V of  type (k + 1, s) with s < 2n - k is 

k + 2  
fk(C(v, 2n + 1)) = -v--~_--~f~+ l(C(v + 1,2n + 2)) 

(compare [1, 9.6.2]). If we substitute for fk+ I(C(v + 1, 2n + 2)) from (1) we obtain 
(2), which completes the proof of  the corollary. 

The author wishes to express his thanks to Branko Griinbaum and Peter 
McMullen for reading a preliminary version of  this paper and making a number 
of  suggestions for improvement. 
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